h -
‘

Zigbee 3.0 IoT Control Bridge

This Application Note applies to the JN5189, JN5188, K32W061,K32W041,K32W041A
and K32W041AM Zigbee 3.0 wireless microcontrollers used with the DK006
(Development Kit) platform. These microcontrollers will be referred to as the DK006
microcontrollers throughout this document.

The Zigbee 3.0 Getting Started Application Note [JN-AN-1260] contains instructions
for installing MCUXpresso, DK006 microcontroller SDKs and other required tools to
develop with this Application Note.

The NXP Zigbee 3.0 IoT Control Bridge provides a means of controlling Zigbee
devices via a serial link which is connected to a host controller. The IoT Control
Bridge supports Zigbee Lighting & Occupancy (ZLO) devices, controlling the network
by mostly client cluster commands, and runs on the NXP DK006 wireless
microcontrollers.

This guide provides information to allow users to connect to the Control Bridge using
a Graphical User Interface (GUI), which simulates a host, to operate the Zigbee
network. It also describes the serial protocol used to interface with the Control Bridge,
as well as the payloads of all relevant commands and responses.

1 Application Note Overview

This Application Note is concerned with a Zigbee 3.0 Control Bridge device implemented as
a serial device. This device would typically form the Zigbee side of an IoT Gateway. The
Application Note shows how the Zigbee Control Bridge can be controlled by an application
running on a PC. It also demonstrates the different commands that can be sent in the
payload that the Zigbee Control Bridge requires. The demonstration described in this guide
uses the hardware found in the DK006 Development Kits. For information on how to use the
Zigbee 10T Control Bridge with the components of these kits, please refer to the relevant
DKO006 Development Kit User Guide.

This guide is intended to show how to set up and use the Control Bridge in a simple
demonstration network of Zigbee Lighting & Occupancy (ZLO) devices, in order to familiarise
users with the functions available to a Gateway host. This is done by using the Zigbee
Gateway Graphical User Interface (ZGWUI) to interact with the Control Bridge to manage
the network and the devices. The ZGWUI is a C# application that acts as a PC host that
communicates serially with the Control Bridge. The firmware used in this Application Note is
supplied as source code to allow customisation. Firmware for the Zigbee devices to be
controlled can be built from the Application Note Zigbee 3.0 Light Bulbs [JN-AN-1244] and
other NXP Zigbee 3.0 Application Notes.

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2020 1

Zigbee 3.0 IoT Control Bridge

2 Capabilities

The Zighee Gateway can be used to control Zighee 3.0 network nodes based on the Zigbee
Lighting & Occupancy (ZLO) devices. However, for backwards compatibility, it can also be
used to control devices from the former Zigbee Light Link and Home Automation profiles.

The main purpose of this Application Note is to provide a slave application that receives
various commands to control nodes within a Zigbee network. This allows a master (normally
a host) to bridge into a Zigbee network while servicing IPv6 devices or other protocols.

The ZGWUI is provided in this Application Note as a way demonstrating all the different
features that the Control Bridge supports. It is also provided as source code, so developers
can reference the protocol data sent to the Control Bridge to aid faster development.

3 What is Provided

The demonstration package comes with the following components, intended to be used with
hardware components in the DK0O6 kits:

e Documentation (this document)
¢ Application binaries and source code for the following:
o Zigbee Control Bridge
o Zigbee Gateway Graphical User Interface (ZGWUI)

Although in most cases the Zigbee Control Bridge can be used “as is”, developers may want
to add extra functionality or even add application-specific behaviour.

To run the demonstration, application binaries are also required for the network nodes. The
light bulb binaries provided in the Application Note Zigbee 3.0 Light Bulbs [JN-AN-1244]
provide the most visual examples and should be loaded into boards of the DK0O06 kit (see
Setting up the Nodes).

2 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

4 Development Environment

4.1 Software

In order to use this Application Note, you need to install the Eclipse-based Integrated
Development Environment (IDE) and Software Developer’s Kit (SDK) that are appropriate for
your DKOO6 wireless microcontroller:

e MCUXpresso IDE
e JN518x Zigbee 3.0 SDK
o K32WO061/K32W041A/K32W041AM Zigbee 3.0/Bluetooth SDK

The MCUXpresso software and installation instructions are described in the Zighee 3.0
Getting Started Application Note [JN-AN-1260]. The JN-AN-1247 Release Notes (included in
this folder) indicate the versions of MCUXpresso and SDK that you will need to work with
this Application Note.

The DK0O06 wireless microcontroller specific resources and documentation are available via
the MCUXpresso website to authorised users.

@ Note: Prebuilt application binaries are supplied in this Application Note
package see the Zigbee 3.0 Getting Started Application Note [JN-AN-
1260] for instructions on how to compile the application binaries on your
own system.

4.1.1 Compilation for Specific Chips/SDKs

The Application Notes are provided ready for compilation for a single chip on a single SDK,
the default configuration is specified in the Release Notes for each Application Note. To alter
the compilation for a different chip/SDK use comments near the top of the makefile to select
the appropriate chip using the JENNIC_CHIP variable which will also select the appropriate
SDK. This assumes that MCUXpresso and the SDK has been installed following the
instructions in the Zigbee 3.0 Getting Started Application Note [JN-AN-1260]. The example
below selects the K32W061 chip and the appropriate SDK:

Set specific chip (choose one)
JENNIC CHIP ?= K32W061
#JENNIC_CHIP ?= K32W041
#JENNIC CHIP ?= JN5189
#JENNIC CHIP ?= JN5188

4.2 Hardware

Hardware kits are available from NXP to support the development of Zigbee 3.0 applications.
The following kits provide a platform for running these applications:

o JN518x-DK006 Development Kit, which features JN5189 devices
o |0oT_ZTB-DKO006 Development Kit, which features K32W061 devices

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

Zigbee 3.0 IoT Control Bridge

5 Running the Demonstration

5.1 Programming the DK0O0O6 Device

The following table lists the supplied binary files and the components of the DK0O06 kit on
which they may be used.

Expansion Board

st i (+ Carrier Board)
Application Binary . USB Dongle
Generic OM5577/PN7120S
ControlBridge_Full_GpProxy_1000000.bin [| [|
ControlBridge_Full_Ncilcode_GpProxy_1000000.bin]

Each binary name provides details of the supported device type, optional functionality and
baud rate for the Control Bridge — for example:

o ControlBridge_Full_GpProxy_1000000.bin is the Control Bridge binary which
supports both Router and Coordinator device types, supports Touchlink
commissioning and GP Proxy and supports a 1M baud rate.

o ControlBridge_Full_Ncilcode_GpProxy_1000000.bin adds NFC
Commissioning/Decommissioning features when used on a OM15076-3 Carrier Board
fitted with a OM5577/PN7120S or OM5578/PN7150 NFC Controller Expansion Board.

Other variants can be built by altering make variables in the makefile or on the build
command line.

A binary file can be loaded into the Flash memory of a DK0O06 device using the DK6
Production Flash Programmer [JN-SW-4407]. This software tool is described in the DK6
Production Flash Programmer User Guide [JN-UG-3127].

@ Note: You can alternatively load a binary file into a DK0O06 device using
the Flash programmer built into the relevant IDE.

4 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

To load an application binary file into a DKO06 module on a Carrier Board of a kit, follow the
instructions below:

1.

Connect a USB port of your PC to the USB Mini B port marked “FTDI USB” on the
Carrier Board (next to the 34-pin header) using a ‘USB A to Mini B’ cable. At this point,
you may be prompted to install the driver for the USB virtual COM port.

Determine which serial communications port on your PC has been allocated to the USB
connection.

Put the DK0O06 device into programming mode by holding down the ISP button while
pressing and releasing the RESET button.

Run the batch (.bat) file provided alongside the binary (.bin) file to erase the contents of
the flash memory including the persistent data stored by the PDM and program the
binary file into flash memory. The batch file will prompt for the COM port number to use.

Once the download has successfully completed, reset the board or module to run the
application.

@ The batch files require the installation of the DK6 Production Flash
Programmer to have been completed following the instructions in the
Zighee 3.0 Getting Started Application Note [JN-AN-1260].

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

Zigbee 3.0 IoT Control Bridge

5.2 Running the ZGWUI

The ZGWUI is a C# application that was developed to allow a Zigbee network to be easily
set up and run without needing any special knowledge. Below is a screenshot of the
application. The sections that follow explain how to demonstrate the common functionality of
the ZGWUI. The ZGWUI application is located in the folder Tools/TestGUI/ZGWUI.

ERETow—————" S e e

Settings OpenPort About

Mariagemert | Discover Devices | General | AHI Cortrol | Basic Cluster | Group Cluster | Idertify Cluster | Level Cluster | On/Off Cluster | Scenes Cluster | Colar Cluster | Door Lock Cluster | IAS Zone Cluster | IAS WD Cluster I ZLL Touchlink | ZLL On/Off Cluster | jletafr
[EmsePD | [Rest | [GeiVesion | [Stai NWK | [StartScan | A

]

[et Secury | |PRECONFIGURED LINK KEY v] 0N [GLOBALLINKKEY | 5AG967426565416C6CA9616E63652038

[setType | [cooRrDiNATOR -

Target (165i Hex) | | Address (6467 Hex) [REJOIN ~| [REMOVE CHILDREN -]

L [ReJom = [REMOVE CHILDREN ~

I Address (64-bit Hex) UserReq

) %
e :

T tHed [NCICmd] [COMMISSION -

Raw Data Received Message View [] View Additional Debug?

6 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.1 Connecting to the Control Bridge

In order to connect to the Control Bridge and issue commands to communicate with Zigbee
devices, a serial connection must be set up and opened. To do this, click on Settings
towards the top-left of the interface.

F

w ZigBee Gateway User Interface

Settings Open Port About

A pop-up window will appear showing all the available serial connections. Select the correct
serial port, configure the baud rate to 1000000, leave all the other settings as default and
click OK.

"

FigBee Gateway User Interface

e Settings [:' [=] ihj

Double click on port you warnt to use:
IUSE Serial Part {COM4)

Baud Rate - Hex
Data Bits g - -
| | ol
| Parity MNone -
Stop Bits 1 -
1 Flow Control Mone -

(B ot He) | NG

I Pemmit Jnin State

Now click the Open Port button in the ZGWUI. A serial connection to the Control Bridge will
be opened with the status shown in the bottom-left corner of the interface.

COM4 1000000-8-M-1 Open

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

Zigbee 3.0 IoT Control Bridge

5.2.2 Configuring and Starting a Network

Before initiating a network, some network configuration needs to be done - certain
commands need to be run before the network is started, as described below. The description
assumes that classical joining will be used to form the network.

In this case, the Control Bridge starts as a Coordinator and allows devices into the network
via MAC association. Before you start the network, there are basic commands that can be
optionally issued to create a customised network.

The optional Set EPID textbox can be used to enter a pre-defined Extended PAN ID (EPID)
as a 64-bit hexadecimal value. The “Set Extended PAN ID” command can then be issued by
clicking the Set EPID button.The Control Bridge will select an Extended PAN ID if this
command is skipped.

I e L I I 1 Voradtorl I I Sl Wl a3] I I AL IRER

Set EPID Bxtended PAN |D (5d-bit Hex

| PSS

The optional “Set Channel Mask” command informs the Control Bridge which channels the
network can start on. The Control Bridge will then choose the best channel available. The
Set CMSK textbox can be used to specify either a hexadecimal value for a channel mask of
possible channels or a decimal channel number if a fixed channel is to be used. The “Set
Channel Mask” command can then be issued by clicking the Set CMSK button. The Control
Bridge will scan all channels if this command is skipped.

e e e

SetCMSK | HI

[B R T I

Indicates the network is to start on channel 20 only

Once the network has been configured, it can be started. This is done by pressing the Start
NWK button.

AL | T LR el

] [Satnwix] [

You will receive two messages back which will appear in the Received Message View pane
in the bottom-right of the interface. The first will indicate a successful execution of the start
network command and the second will indicate that the network has been formed, with
information about the network parameters.

Received Message View Clear

Type: kB000 (Status)
Length: 4
Status: 00 (Success)
SQN: D00
Message:
Type: (024 (Metwor Lp)
Status: 01
Short Address: (0000
Bxdended Address: B1580000035D02F
Channel: 20

8 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.3 Setting up the Nodes

The demonstration requires the OM15076 Carrier Boards (supplied with the DK006
Development Kits) to be configured as lights which can be controlled. Each Carrier Board
therefore needs to be fitted with a OM15081 Lighting/Sensor Expansion Board.

Set the jumpers for battery, USB or power supply operation according to how the Carrier
boards will be powered during the demonstration. Refer to the DK006 Development Kit User
Guide for details of the jumper settings.

Plug the Lighting/Sensor Expansion Boards onto the Carrier Boards.

5.2.3.1 Programming the Zigbee Device Binaries

Depending on which type of device and Zigbee network configuration you are demonstrating,
you will need to program each light board with an application binary from the Application
Note Zigbee 3.0 Light Bulbs [JN-AN-1244]. They must be programmed into the devices

using the JN518x Flash Programming tool see the relevant SDK Release Notes for details.

5.2.4 Joining Nodes to the Network

The nodes can be joined to the network using either classic join or using NFC (with
appropriate hardware).

5.2.4.1 Classic Join

To successfully join a node to the network, a network must be started and ‘permit join’ must
be enabled on the network node(s) that other devices will join. In the first (left) Permit Join
textbox, enter the address of the node on which you wish to allow joining (normally 0x0000
for the Coordinator or OXFFFC for all Router/Coordinator nodes). In the second (right)
Permit Join textbox, enter the length of time in seconds for which you require ‘permit join’ to
be active. Both values must be entered in hexadecimal. Click the Permit Join button to
enable ‘permit join’ on the specified node(s).

1
Permit Join | FFFC FE| | NO CHANGE -|

Broadcast to all Router/Coordinator devices to allow joining for 254 seconds.

When a device joins the network, it will send out a Device Announce message which is
captured in the Received Message View pane.

Received Message View Clear

Type: (el040 (End Device Announce)
Short Address: 7B7D
Extended Address: 1580000035C55C
MALC Capability: (xBE
Altemate PAN Coordinator: False
Device Type: Router
Power Source: AC
Receiver On When Idle: True
Security Capability: Standard
Allocate Address: True

5.2.4.2 Install Codes Join

To successfully join a node to the network using install codes, all steps from Classic Join
should be done. Before the node attempts to join the network, the MAC address and the

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

Zigbee 3.0 IoT Control Bridge

install code of the joining device must be provided to the Trust Centre. In the first (left)
Install Code textbox, enter the MAC address of the device that will join to the network and in
the second (right) Install Code textbox, enter the Install Code associated with the node. For
information on how to find/change the install code of the joining device, please refer to
Zigbee 3.0 Base Device [JN-AN-1243] User Guide or Zigbee 3.0 Light Bulbs [JN-AN1244]
User Guide.

Install Code ‘DDISBDDDDINBEAS 01:02:13:14:15:16:17:18:11:12:13:14:15:16:17:18 ‘

Providing the MAC address and the install code of joining node to the Trust Centre

When the MAC address and the Install code of a device is provided to Trust Centre, it will
send out an Install Code Data Response message which is captured in the Received
Message View pane.

Received Message View [| View Additional Debug?

Type: (x802F

(Install Code Data Response)

Status: 0x00

Device Extended Address: 158D000191B9A6
| Key: F2BB3518FSEFB184C1F754951412066

By default, only 16 associations between MAC address and Install codes can be provisioned
in the Trust Centre at a time. As nodes successfully join the network the MAC address and
install code for that device is removed allowing further entires to be added. This number can
be customized from ICODE_MAX_TABLE_SIZE macro in app_common.h file.

The install code table is also held in RAM memory only so power-cycling the Control Bridge
will delete these records.

« The install code for a joining device should be provided to the Control
Bridge each time the device is to be newly joined to the network.

By default, devices can join to the network using classic join or install code join. To permit
only the joining of devices that have an install code associated and provided to the Trust
Centre, the JOIN_WITH_INSTALL_CODE_ONLY macro should set to TRUE in
bdb_options.h file . Also BDB_JOIN_USES_INSTALL_CODE_KEY should be set to TRUE.
To permit only classic join, BDB_JOIN_USES_INSTALL_CODE_KEY must be set FALSE.

10 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.4.3 NFC Join

The ControlBridge_Full_Ncilcode_GpProxy_1000000.bin firmware allows nodes to join
the network using NFC. The Control Bridge software should be run on a OM15076-3 Carrier
Board fitted with a OM5578/PN7150 NFC Controller Expansion Board. LEDs on the OM5578
expansion board provide feedback.

The Control Bridge will be in NFC Commissioning mode following power on (this can be
changed at compile time). When in this mode the green LED will flash slowly indicating that
new nodes can be added to the network using NFC.

The NFC mode can be altered from the ZGWUI Management tab by selecting the mode
from the drop-down then clicking the NCI Cmd button:

NCI Crnd COMMISSION -

COMMISSION
DECOMMISSION
DISABLE

While in NFC Commissioning mode any of the NTAG enabled devices from the other DK006
Application Notes can be placed over the NFC reader to add them to the network. Whilst the
data in the NTAG is being accessed the green LED will flash quickly, if successful it will
remain lit until the device is removed from the field when it will revert to flashing slowly. In
the case of a failure the green LED will be extinguished until the device is removed from the
field (when it will return to flashing slowly).

When the Control Bridge successfully accesses an NTAG it will output a notification on the
serial link indicating the type of operation, the Zigbee Device ID and the Extended Address
of the device in the Received Message View pane. This message could be used to pre-
populate databases on the host device in order to present an appropriate GUI for the device.

Received Message View View Additio

Type: k802E
(NCI Command Motify)
Command: Commission
Device 1D: 0100
Extended Address: Bx15800001F4501D

When the device indicates it is active in the network it will transmit a Device Announce
message which will also be displayed in the Received Message View pane (in the same
way as a Classic Join).

Received Message View View Additio

Type: (004D
(End Device Announce)
Short Address: 8373
Extended Address: Bx15800001F4501D
MAC Capability: (8E
Altemate PAN Coordinator: False
Device Type: Router
Power Source: AC
Receiver On When Idle: True
Securty Capability: Standard
Allocate Address: True

The NFC Decommission mode will factory reset any devices placed into the field (they will
leave the network as part of this process). When in this mode the yellow LED is used to
provide feedback (with the same indications as used on the green LED for NFC
Commissioning mode).

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

11

Zigbee 3.0 IoT Control Bridge

The NFC Disabled mode will not interact with presented NTAGs thus preventing the NFC
reader being used to add or remove devices from the network. When in this mode the LEDs
are turned off. For extra security it may be desirable to keep the Control Bridge in this mode
unless to user specifically enables NFC joining or leaving in some way.

5.2.5 Controlling Devices

In this example, it is assumed that you have joined a Dimmable Light device to the network.
A Dimmable Light device supports the On/Off and Level Control clusters that are used to
modify the lighting characteristics of the bulb.

5.2.5.1 On/Off Cluster

Switching a light on or off is done using a command in the ZGWUI that has various attributes
added.

Click on the On/Off Cluster tab along the top of the interface.

| Management I General | Basic Cluster I Group Cluster I Identify Cluster | Level Cluster| On/Off Cluster |5c:enes Cluster | Caolar Cluster I Doc

[OnOff] [Bound Addr v] Address (16-bit Hex]| | Src EP (8-bit Hex Dst EP {8-bit Hex [Oﬁ v]

Select the address mode that you would like to use. Then in the three textboxes, enter the
16-bit network address of the node you want to control (when using short addresses), the
source endpoint number and the destination endpoint number (all in hexadecimal, 1 is used
in all the DK006 Application Note devices). Finally, select the type of “On/Off” command that
you want to send.

| Management I General | Basic Cluster I Group Cluster | |dentify Cluster | Level Clusterl On/Off Cluster |Sc:enes Cluster | Color Cluster | Da

| OnOF | [ShotAddr ~| 787D

r 1r 1 — R

The light will change its on/off state and a Default Response message will be received in the
Received Message View pane. The Default Response confirms that a device received the
“On/Off” command and processed the command. If the command was not sent via unicast, a
Default Response will not be received.

Received Message View

Type: kB000 (Status)
Length: 4
Status: (00 (Success)
SGN: D03
Message:
Type: (B101 (Default Response)
SGN: D03
EndPaint: ({1
Cluster |D: (0006 (General: On/Of)
Command: (02
Status: G0

12 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.5.2 Level Control Cluster

The Level Control cluster allows a bulb’s dimmable light level to be set to a specific value.
This value can be between 0 and 254 (inclusive), and can be set on the Level Cluster tab.

| Management | General I Basic Cluster | Group Cluster | Identify Cluster| Level Cluster |On,-"OH Cluster | Scenes Cluster I Color Cluster I Door Lock Cluster | I1AS Cluster | rill

‘ [MoveTolevel] [Bound Addr v] Address (16-bit Hex]| Src EP (8-bit Hex) Dst EP {8-bit Hex) Lewvel (8-bit Hex) Time (16-bit Hex)

There are a number of attributes that can be passed to the Control Bridge as part of the
Level Control cluster's “Move To Level” command:

e Addressing mode
e Hexadecimal destination address
e Source endpoint
e Destination endpoint
e With/without On/Off (indicates whether to modify On/Off state with Level Control)
e Hexadecimal level value
¢ Hexadecimal transition time (in tenths of a second)
These attributes appear (in the above order) on the MoveToLevel line in the interface:

| Mariagement I General I Basic Cluster | Group Cluster | Idertify Cluster| Level Cluster |Onx"0ﬁ Cluster I Scenes Cluster | Color Cluster I Door Lock Cluster | IAS Cluster I ZL

‘ [MoveTolevel | [ShotAddr ~| 787D 1 1 2

The command is sent by clicking the MoveToLevel button. After sending this command with
the above attribute values, the destination light will dim to the lowest level with a 1-second
transition. A Default Response will be received in the Received Message View pane to
indicate that the command was processed.

Feceived Message View

Type: 3000 (Status)
Length: 4
Status: (00 (Success)
SQN: 09
Message:
Type: 8107 (Default Response)
SQN: D09
EndPoint: Tl
Cluster 10 ©0008 (General: Level Control)
Command: (04
Status: 0

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

13

Zigbee 3.0 IoT Control Bridge

5.2.6 Managing Groups

In the ZGWUI, there are several commands available to manage groups and the devices
that are members of these groups. All group commands are listed in the Group Cluster tab.

| Management | General | Basic Duster| Group Cluster | Idertify Cluster | Lewvel Cluster | On/Off Cluster | Sc

Add Group Address (16bit Hex] Src EP (8-hit Hex) D=t EP (8-bit Hex Group 1D {16-hit Hex
View Group | Address (16bit Hex] Snc EP (2-bit Hex Dst EP (8-bit He Group 1D (16-hit He
Get Group Address (16bit Hex]| Src EF (8-bit Hex Dist EP (8-bit Hex Group Cou

=]
=
(1]
g
=
[w]
=
il
(%]
2]
-
dr
I
1]
[y
L]
m
]
[==]
dr
I
]
[)
(4]
m
=]
[ma]
dr
I
]
Ll
[=]
C
T
(]
P
.
I
]

Remowve Al | Address (1
| Remove Al |

(o5]
dy
I
]
[%y]
L]
m
[==]
oy
I
1]
[)
i
m
(=]
=)
I

o
Ex
g
2=
=]
=
i
n
]
[oF]
dr
I
1]
[2¢]
0
m
=]
[==]
dr
I
i
[)
I
m
=]
(=]
dr
I
m
Ll
=]
C
T
(]
o
e
I
m

5.2.6.1 Add Group

You can add a device to a group by sending an “Add Group” command to the device, in
order to add the relevant group ID into the device’s Group Address table. This is done in the
Add Group line of the interface by entering the network address of the device, source
endpoint number, destination endpoint number and user-defined Group ID, and then clicking
the Add Group button

| Management | General I Basic Cluster| Group Cluster | |dentify Cluster | Level Cluster | On A0 Cluster | Sc

Add Group | 7D6A 1 1 BEEF

An Add Group Response is then displayed in the Received Message View pane with the
Group ID and the status of the command.

Received Message View

Type: (8000 (Status)
Length: 4
Status: (0 (Success)
SQN: D0
Message:
Type: (B060 (Add Group Response)
SGN: D00
EndPaint: ({1
Cluster |D: (0004 (General: Groups)
Status: (00
Group: (xkBEEF

To verify that this group has been added, try sending an “On/Off” command with the group
address you have just added. This will toggle the on/off state of the light. Note that since this
is a groupcast, a Default Response will not be received.

| Management I General I Easic Cluster | Group Cluster I Identify Cluster I Level Clusier| On/Off Cluster |Scenes Cluster I Color Clust

| OnOf | |Goup Addr v | BEEF 1 1 | Togdle -

14 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.6.2 View Group

You can find out whether a device is a member of a specific group by sending a “View Group’
command to the device. This is done in the View Group line of the interface by entering the
network address of the device, source endpoint number, destination endpoint number and
Group ID of the relevant group, and then clicking the View Group button.

_

706A 1 1 BEEF

| ——— | o " i~ - - - o E —~ i~

If the device is a member of that group, you will receive a View Group Response with a
status of “Success” (0x00).

Received Message View

Type: kaB000 (Status)
Length: 4
Status: (00 (Success)
SGN: D02
Message:
Type: kB061 (View Group Response)
SGN: D02
EndPaint: 1
Cluster 1D (0004 (General: Groups)
Status: G0
Group: (xBEEF

If the device is not a member of that group, you will receive a View Group Response with a
status of “Not Found” (0x8B).

Received Message View

Type: beB000 (Status)
Length: 4
Status: (0 (Success)
SON: Tl
Message:
Type: 8061 (View Group Response)
SGN: Dl
EndPaint: 01
Cluster |D: (0004 (General: Groups)
Status: BB
Group: (eAAAA

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

15

Zigbee 3.0 IoT Control Bridge

5.2.6.3 Get Group Membership

You can find out which groups a specific device is a member of by sending a “Get Group
Membership” command to the device. This is done in the Get Group line of the interface by
entering the network address of the device, source endpoint number, destination endpoint
number and group count (number of groups you want to look for), and then clicking the Get
Group button.

WISV U RIS | UL | ISA] | [L UL | IS Leal Ll UL IS AU L UL S
Get Group | 42C3 1 1 0
Rammea ESm AdAdrace MERit Hawl! Cre EP iRt Heee Mot EP ikt Heee Erean 1T E b Hane

If the device is a member of any groups, it will respond with the number of groups and the
group addresses of the groups to which it belongs.

Received Message View

Type: EB000 (Status)
Length: 4
Status: 00 (Success)
SQN: 03
Message:
Type: B062 (Get Group Response)
SQN: 03
EndPoint: Tl
Cluster 1D (0004 (General: Groups)
Capacity: 7
Court: 1
Group 0: BeAAAA

If the device is not a member of any groups, it will respond with an empty group list with a
count of 0.

Received Message View

Type: beB000 (Status)
Length: 4
Status: (0 (Success)
SGN: Mx05
Message:
Type: 8062 (Get Group Respaonse)
SGMN: D05
EndPaint: G0
Cluster 1D (0004 (General: Groups)
Capacity: 8
Count: 0

16 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.6.4 Remove Group

You can remove a group from a device’s Group Address table by sending a “Remove Group’
command to the device. This is done in the Remove Grp line of the interface by entering the
network address of the device, source endpoint number, destination endpoint number and
the relevant Group ID, and then clicking the Remove Grp button.

_

423 1 1 ARAA

- 1

If the device is a member of the group that you are trying to remove then it will respond with
a status of “Success” (0x00).

Received Message View

Type: 3000 (Status)
Length: 4
Status: (00 (Success)
SGN: 07
Message:
Type: 8063 (Remove Group Response)
SCQN: 07
EndPoint: (01
Cluster |D: (0004 {General: Groups)
Status: (00
Group: DeAAAA

If the group does not exist on the device, it will respond with a status of “Not Found” (0x8B).

Received Message View

Type: (8000 (Status)
Length: 4
Status: (0 (Success)
SON: DB
Message:
Type: (B063 (Remove Group Response)
SON: DB
EndPoint: 01
Cluster |D: (0004 (General: Groups)
Status: (2B
Group: (xkBEEF

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

17

Zigbee 3.0 IoT Control Bridge

5.2.6.5 Remove All Groups

You can remove a device from all groups by sending the “Remove All Groups” command to
the device. This is done in the Remove All line of the interface by entering the network
address of the device, source endpoint number and destination endpoint number, and then
clicking the Remove All button.

_

Irrespective of whether the device is associated with any groups, it will always respond with
a status of “Success” (0x00).

Received Message View

Type: (eB000 (Status)
Length: 4
Status: (00 (Success)
SOM: (x0C
Message:
Type: 8107 (Default Response)
SON: TelC
EndPoirt: (01
Clugter 10 (D004 (General: Groups)
Command: (04
Status: (00

5.2.6.6 Add Group If Identifying

You can attempt to add a device to a group if the device has been put into Identify mode by
sending the “Add Group If Identifying” command to the device. This is done in the Add If
Ident line of the interface by entering the network address of the device, source endpoint
number, destination endpoint number and the Group ID to be allocated, and then clicking the
Add If Ident button.

Add if Idert | 42C3 1 1 AAAA

This command does not send a response back to the host, but you can perform a send “Get
Group Membership” command to verify that device is a member of the group.

18 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.7 Managing Scenes

In the ZGWUI, there are several commands available to manage scenes and the devices
that participate in these scenes. All scene commands are listed in the Scenes Cluster tab.
To be able to use a scene command, the target device must be a member of a group with an
associated scene.

5.2.7.1 Add Scene

The "Add Scene" command allows a scene with specified Scene ID (associated with a
particular Group ID) to be added on a remote device. This feature is included in the example
code for the ZGWUI application but is not fully implemented in the interface. You can add a
scene using the "Store Scene" command (see Store Scene).

5.2.7.2 Store Scene

The “Store Scene” command instructs a device to save its current state in a scene (new or
existing). This is done in the Store Scene line of the interface by entering the addressing
mode, address of the device, source endpoint number, destination endpoint number, Group
ID and Scene ID, and then clicking the Store Scene button.

' d L]

IStore Scene J [Short Addr vI 42C3

This results in the following “Store Scene Response” command which is displayed in the
Received Message View pane.

Received Message View | Clear |

Type: CcBO00 (Status)
Length: 4
Status: 00 (Success)
SQMN: (05
Message:

Type: (eB0A4 (Store Scene Response)
T Mum: (05
Source Endpaoirt: Gx01
Cluster 1D 0005
Status: 00
Group 10 (eAAAA
Scene |D: B0

The above output indicates that the device state has been successfully stored in the scene
with Scene ID 0x01 associated with the group with Group ID OXAAAA

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

19

Zigbee 3.0 IoT Control Bridge

5.2.7.3 Recall Scene

The “Recall Scene” command instructs a device to restore a previously saved scene in the
device - for a light bulb, this could be restoring an on/off and level state. This is done in the
Recall Scn line of the interface by entering the addressing mode, address of the device,
source endpoint number, destination endpoint number, Group ID and Scene ID, and then
clicking the Recall Scn button.

8 L il

| Recall Sen | [Shot Addr ~ | 6def 1 1 AAAA 1

When the command is sent, a response will appear in the Received Message View pane
indicating whether the command has been successful.

Received Message View

Type: (8000 (Status)
Length: 4
Status: Bl (Success)
SQN: DS
Message:

5.2.7.4 View Scene

You can view the details of a scene (e.g. on/off state, level) on a device by sending a “View
Scene” command to the device. This is done in the View Scene line of the interface by
entering the addressing mode, address of the device, source endpoint number, destination
endpoint number, Group ID and Scene ID, and then clicking the View Scene button.

| View Scene | [Short Addr +| 42C3 1 1 ARAA 1

After sending a successful “View Scene” command, a response containing scene
information like Transition time, Scene Name Length, Scene Name and Scene Data will be
displayed in the Received Message View pane.

Received Message View

Status: Ix00 (Success) =
SQN: DDA
Message:
Type: beB0A0 (View Scene)
SQN: DDA
EndPoirt: (1
Cluster 1D 0005
Status: 00
Group |0 (eAAAA
Scene Id: G
Transition Time: (0000
Scene Name Length: (00
Scene Name Max Length: 10
Scene Name:
Ext Scene Length: (0008
Ext Max Length: (00
Scene Data:
(04 (eD0 76 B 70 el GocD1 (79 ToedC 57

m

20 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.7.5 Get Scene Membership

You can find out which scenes associated with a particular group are available on a device
by sending a “Get Scene Membership” command to the device. This is done in the Get
Memb line of the interface by entering the addressing mode, address of the device, source
endpoint number, destination endpoint number and Group ID, and then clicking the Get
Memb button.

" TN]

| GetMemb | [ShotAddr +] 42C3 1 1 [RAAR]
1r 1

After sending a successful “Get Scene Membership” command, a response listing the
number of scenes and the Scene IDs available will be displayed in the Received Message
View pane.

Feceived Message View

Type: 000 (Status)
Length: 4
Status: (0 (Success)
SGN: 0B
Message:

Type: 804G (Get Scene Membership Response)
T Num: (0B
Source Endpairt: G0
Cluster 1D (0005
Status: G0

Capacity: I0F

Group D eAAAA
Scene Count: (el
Scene List:

Scene: (01

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

21

Zigbee 3.0 IoT Control Bridge

5.2.7.6 Remove All Scenes

You can remove all scenes associated with a particular group on a device by sending a
“‘Remove all Scenes” command to the device. This is done in the Remove All line of the
interface by entering the addressing mode, address of the device, source endpoint number,
destination endpoint number and Group ID, and then clicking the Remove All button.

" 4|]

Remove Al | |

After sending a successful “Remove All Scenes” command, a response indicating whether
the removal was successful will be displayed in the Received Message View pane.

Received Message View

Type: (cB000 (Status)
Length: 4
Status: 00 (Success)
SQN: IxDE
Message:

Type: cB0A3 (View Scene)
SQN: Ix0E
EndPairt: (01
Cluster 1D:; 0005
Status: (00
Group |0 (eAAAA

22 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

5.2.7.7 Remove Scene

You can remove a specific scene associated with a particular group on a device by sending
a “Remove Scene” command to the device. This is done in the Remove line of the interface
by entering the addressing mode, address of the device, source endpoint number,

destination endpoint number, Group ID and Scene ID, and then clicking the Remove button.

| Remove |[shomAdsr =] 42c3 1 1 AAAA i

After sending a successful “Remove Scene” command, a response indicating whether the
removal was successful will be displayed in the Received Message View pane.

Received Message View

Type: (8000 (Status)
Length: 4
Status: (00 (Success)
SQN: D11
Message:

Type: B0AZ (Miew Scene)
SQN: D1
EndPoint: G0
Cluster 1D 0005
Status: (3B
Group |D: DeAfAA
Scene |D: B0

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

23

Zigbee 3.0 IoT Control Bridge

5.2.8 Running Over-The-Air (OTA) Upgrade

The ZGWUI provides an interface to perform an Over-The-Air (OTA) upgrade. This involves
loading an application binary that will be served out ‘over the air’ to devices in the network.
The following sections demonstrates how OTA upgrade is executed on the ZGWUI. This
demonstration assumes that you have devices in the network which have the OTA Upgrade
client cluster implemented. This document will describe the process of OTA upgrade on a
Dimmable Light device. For this example, the following binary is initially used in the
Dimmable Light:

DimmableLight_Ntaglcode_GpCombo_Ota_OM15081_V1.hin

This application is supplied in the Application Note Zigbee 3.0 Light Bulbs [JN-AN-1244] and
must be loaded into a network node (see Setting up the Nodes).

5.2.8.1 Loading the Upgrade Binary

To perform an OTA upgrade, the relevant upgrade binary file needs to be loaded into the
ZGWUI application. Click on the OTA Cluster tab, which is displayed as follows:

Managemert | General | Basic Cluster | Group Cluster | Idsntify Cluster | Level Cluster | On/Off Cluster | Scenes Cluster | Color Cluster | Door Lock Cluster | IAS Cluster | ZLL Touchlink | ZLL On/Off Cluster | ZLL Color Cluster | OTA Cluster

Load Image Manu Code Image Type File Version Size
Image Motify | |Bound Addr | Address (16bit Hex) Src EF (2hbit Hex Dst EP (8bit Hex JITTER x| Version (32bit Hex) | Image Type (165t Hex) | Manu ID (16bit Hex) || Query Jitter (8-bit Hex

Download Status Progress File Offset

Click the Load Image button to bring up the file explorer window. Navigate to the folder
which contains the OTA upgrade binary file that is to be used to upgrade the remote device
and select the file — this is a .ota file, in this case:

DimmableLight_Ntaglcode_GpCombo_Ota OM15081 V2.ota

This file is supplied in the Application Note Zigbee 3.0 Light Bulbs [JN-AN-1244], which must
be present on your PC.

24 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

B8 ZigBee Gateway User Interface =
Settings Close Port About
General | AHI Cortrol | Basic Cluster | Group Cluster | Idertify Custer | Level Cluster | On/OFf Cluster | Scenes Custer | Color Oluster | Door Lock Cluster | 1AS Zone Clster | 1AS WD Cluster | ZLL Touchink | ZLL On/Off Custer | ZLL Color Clster | OTA Cluster [P
FielD BEEFIIE HeaderVer 100 HeaderLen 38 Header FCTL 00 ManuCode 1037 imageType 010D FieVersion (00000002
Stack Ver 02 Sze 244910 Header Str OM15081r1—JN518000000000000000
[E;elect an OTA Image 2
WatP -
[Lwetre & () =00« W v mou » INSW-HT0 v workspace » IN-AN-1244-ZigBee-3-0-Light-Bulbs-for-I\516x » DimmableLight » Build » OTABuild ~ [3] [Search OTABuTa 2|
Download]
Organize v Newfolder = Al @
A Favorites + Name Date modified Type Size
P Desktop) DimmableLight JN5180_OMI5081_GP_COMBO_Ntaglcode V2 1512/201711:23 OTAFile 23K8
& Downloads &) DimmableLight JN5180_OMI5081_GP_COMBO_Ntaglcode V3 1512/201711:23 OTAFile u3KB
!-'4' Recent Places # | DimmableLight_JN5180_OM15081_GP_PROXY_Ntaglcode_V2 15/12/2 11:23 OTAFile 226 KB
f@ OneDrive - NXP &) DimmableLight JNS180_OML5081_GP_PROXY_Ntaglcode V3 151220171123 OTAFile 26K8
4 Libraries
/8 Computer
B AWS_System (C:)
3% Sheffield GroupShares (G:)
&3 Home Directory (H)
—— % Scratch (Public Share) () c
3% media (\\NAS-AD-72-D2) (Z)
R
it | GB-52D01-51 R
13:56/18
ESSEE | . il
6261 68 i Network
13:56:18
6155704 File name: DimmableLight_ JNS180_OM15081_GP_PROXY_Ntaglcode V2 - [o1a -
30 30 30
736820
13:56:19.4
13:56/15,657 = 0T B0 22 00 OC ET 0T D0 D0 00 15 B0 DO 0T 22 B 2F OF 03 Gom)
13:56:21.287 > 0102 1049 02 10 02 14 60 02 10 02 10 20 02 10.03 Length: 4
13:56:42.049 <- 0100 4D 00 0B 2D FO 4C 00 158D 00 01 44 B5 31 8E 03 Status: (D6 (ZigBee Eror Code)
13:56:42 371 <- 01 87 01 0D 02 84 00 00 03 N 000
13:56:5.383 > 010210 92 02 10 02 16.28 02 12 FO.4C 0211 02 11 021203 Message
COM104 1000000-8-N-1 Open

After loading the binary file, the ZGWUI will populate the Load Image textboxes with some
useful data, including manufacturer code, image type, file version and binary size.

sl ZigBes Gateway User Interface =

Settings ClosePort About

[General [AHI Cortrol | Basic Cluster | Group Cluster | Identiy Cluster | Level Cluster | On/Off Cluster | Seenes Cluster [Color Cluster | Door Lock Cluster | IAS Zone Cluster [1AS WD Cluster | ZLL Touchink | ZLL On/Off Cluster | ZLL Color Custer| OTACluster [p¢
FlelD BEEFITE HeaderVer 100 Headerlen 38 Header FCTL 00 ManuCode 1037 image Type 0101
Stack Ver 02 Size 230430 Header St OM15081r1—JN512000000000000000

3008 1 1 JITTER ~] (00000002 0100 037 1

File Version ~ 0D00D0D2

The ZGWUI also sends a serial command to the Control Bridge to inform the OTA Upgrade
cluster of the loaded binary. The OTA header information is sent, which is loaded into the
OTA Upgrade server. This means that when a remote device sends an image request to the
server, the Control Bridge will be able to reply indicating that there is an image available.

o f
15:00:01.804 =01 0215021002 1048 DA 0212021002 1002 1BEEF11E02 11 0210021038 021002101037 0211 02 11 02

10021002100212021002124F4D0 3135303831 72312020 2D 4A4E35313830303023030303030302030303030 30
02100213841 1E0210021160021002100213 83 E002 104502 14021002 1103

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

25

Zigbee 3.0 IoT Control Bridge

5.2.8.2 Image Notify

The “Image Notify” command is used to inform all relevant devices in the network that an
OTA upgrade image is available (only devices to which the image is applicable are notified).
This command contains the following parameters:

e Addressing mode

e Destination address

e Source endpoint

e Destination endpoint

¢ Image notify payload type
e Version

e Image type

e Manufacturer ID

o Query jitter

For descriptions of the “image notify payload type” and “query jitter” parameters, please refer
to the description of the tsOTA ImageNotifyCommand structure in the Zigbee Cluster
Library User Guide [JN-UG-3132].

The version, image type and manufacturer ID are visible in the Load Image textboxes,
which can be seen below along with the line for the Image Notify command.

Load Image File ID BEEF11E Header Ver 100 Headerlen 38 Header FCTL 00 ManuCode 1037 Image Type 0101 File Version 00000002
Stack Ver 02 Size 230430 Header Str OM15081r1—JN518000000000000000
Image Notify Short ~| 3008 1 1 JITTER ~ | 00000002 0100 1037 1
r d

The above command notifies all relevant devices in the network and instructs all of them to
upgrade straight away.

Alternatively the devices in the network will periodically query the Control Bridge to
determine is a new compatible image is available for download.

5.2.8.3 Device Updating

When a device has determined that the OTA upgrade binary on the host is relevant to itself
(regardless of whether it was informed via an Image Notify command or as the result of an
update request), the device will start upgrading.

The progress bar in the ZGWUI, shown below, indicates the current status of the upgrading
device. The File Offset value is the number of bytes the server has sent to the device so far.

Tvan aana FUUIESS | 10010 FEX, U CF (oD Mex, LUNETIL HIE (2£UIL MR | | Meyuest £ |22 M| | DIULHK. Leidy | 1D Mes,

Download Status In Progress Progress ;— File Offset 161614

Note that there is only one progress bar and if you have multiple devices upgrading, the bar
will appear slightly random, as it will reflect whichever device is requesting a block of data.

When a device has finished upgrading, the download status will change to “Complete” and
the progress bar will be full.

Download Status Complete Frogess I Fie Offset 150144

26 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Upon completing an OTA upgrade, an End Request is sent to the host (containing the OTA
header information the device received from the OTA server) in order to indicate that the
device is going to reset.

Received Message View Clear

SGN: D00 &
Message: |
Type: (8503 (OTA End Request)
SON: D24
Src Addr Mode: (02
Src Addr; (ed2C3
EndPaint: {1
Cluster |D: (0019 (General: OTA)
File Version: be00000002
Image Type: G010
Manu Code: Ge1037
Status: G0
Type: beB000 (Status)
Length: 4
Status: 0 [Success)
SGN: DD
Message: |

m

6 ZGWUI Source

The ZGWUI is provided as both executable and source code. It is provided as source code
to give the developer information on which data is sent to the Control Bridge and how it is
sent. This should speed up application porting and reduce mistakes made during application
development. Although it provides most of the functionality supported by the Control Bridge,
the ZGWUI does not support all features. Custom features that are added to the Control
Bridge by the developer will also need to be added to the ZGWUI for testing purposes.

The ZGWUI application is built using the Visual Studio 2012 IDE which is based on C# code.

7 Related Documents

The following manuals will be useful in developing custom applications based on this
Application Note:

Zigbee 3.0 Getting Started Application Note [JN-AN-1260]
DK6 Production Flash Programmer User Guide [JN-UG-3127]
Zigbee 3.0 Stack User Guide [JN-UG-3130]

Zigbee 3.0 Devices User Guide [JN-UG-3131]

Zigbee 3.0 Cluster Library User Guide [JN-UG-3132]

Zigbee 3.0 Green Power User Guide [JN-UG-3134]
Encryption Tool User Guide [JN-UG-3135]

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021 27

Zigbee 3.0 IoT Control Bridge

Appendix A: Serial Protocol

A.l. Physical Characteristics

The serial link between the ZGWUI (Zigbee Gateway User Interface) and wireless
microcontroller runs at 1Mbaud in the pre-built binary files. The link settings are 8 data bits
with no parity. No flow control (hardware or software) is used.

A.2. Message Characteristics

The protocol reserves byte values less than 0x10 for use as special characters (Start and
End characters, for example). So to allow data which contains these reserved values to be
sent, a procedure known as “byte stuffing” is used. This consists of identifying a byte to be
sent that falls into the reserved character range, sending an Escape character (0x02) first,
followed by the data byte XOR’d with 0x10.

For example, if a non-special character with the value of 0x05 is to be sent:
e Send the Escape byte (0x02)
e XOR the byte to be sent with 0x10 (0x05 xor 0x10 = 0x15)
¢ Send the modified byte
The messages consist of the following:
e Start character (special character)
o Message type (byte stuffed)
¢ Message length (byte stuffed)
e Checksum (byte stuffed)
o Message data (byte stuffed)
o End character (special character)

1 2 3 4 5 6 7 8 n+6 | n+7 | n+8
0x01 n 0x03
Start | Msg Type Length Chksum Data Stop

Figure 1: Layout of message before byte stuffing

A.2.1. Start Character

The Start character is a single-byte special character with the value 0x01 and is sent as the
first byte of any message to allow the receiving end to synchronise. Since this is considered
a special character, it will be sent without modification.

A.2.2. Message Type

The message type is a 16-bit value identifying the nature of the data contained in the
message payload. Values implemented are defined in the message table.

28 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

A.2.3. Message Length

The message length is a 16-bit value equal to the number of bytes in the payload section of
the message, sent most significant byte first.

A.2.4. Checksum

The checksum is an 8 bit value calculated by XORing the following (starting with a checksum
of 0x00):

e Message type most-significant-byte
o Message type least-significant-byte
¢ Message length most-significant-byte
e Message length least-significant-byte
o Data bytes
The checksum is calculated before byte stuffing the message.

A.2.5. Message Data

The message data is a number of bytes equal to the value sent as the message length field.
The number of bytes transmitted via the UART may be higher due to presence of escape
bytes sent to identify values that fall in the reserved range. All multi-byte binary data is sent
in network byte order (big-endian).

A.2.6. End Character

The end character is a single byte special character with the value 0x03 and is sent as the
last byte of any message to allow the receiving end to synchronise. Since this is considered
a special character, it will be sent without modification.

A.2.7. Sequence

All commands generate a synchronous response code followed by any asynchronous
responses as they become available. There is no sequence number associated with each
command/response — the user must ensure that commands are issued sequentially.

Expected command response sequence:

Direction Message
Host -> Node Command e.g. Get Version
Node -> Host Status e.g. OK or Error, Not implemented
Node -> Host Optional data messages as requested by command, e.g. Version List

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

29

A.3. Data Types

Zigbee 3.0 IoT Control Bridge

The following data types are used in messages between the host and slave devices. All
message definitions use 32-bit integer types, unless otherwise specified.

Name Type
uint8_t Unsigned 8 bit integer (one byte)
uintl6_t Unsigned 16 bit integer (two bytes)
uint32_t Unsigned 32 bit integer (four bytes)
uint64_t Unsigned 64 bit integer (eight bytes)
uint128_t Unsigned 128 bit integer (sixteen bytes)
string Buffer of characters (Variable Length, NULL Terminated)
data Buffer of bytes (Variable length, calculated using message length)

A.4. Response Codes

The node acknowledges each command with an “ACK” message. The message is defined in

the message table.

30

© NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Appendix B: Serial Command Set

B.1. Common Commands

In the following tables, the term Node refers to the Control Bridge

B.1.1. Zigbee Stack and Node Management Commands

Message
Direction

Message
Description

Message Format

Expected
Response

Node->Host

Status
Msg Type = 0x8000

<status:uint8_t>

<sequence number: uint8_t>

<Packet Type: uintl6_t>

<Optional additional error information: string>

Status:
0 = Success
1 = Incorrect parameters
2 = Unhandled command
3 = Command failed
4 = Busy (Node is carrying out a lengthy
operation and is currently unable to
handle the incoming command)
5 = Stack already started (no new
configuration accepted)
128 — 244 = Failed (Zighee event codes)

Packet Type: The value of the initiating command
request.

All status
messages will
have a sequence
number sent
back. Default of 0
for messages
which are not
transmitted over
the air.

Node->Host

Log message
Msg Type = 0x8001

<log level: uint8_t>

<log message : string>

Log Level :

Use the Linux / Unix log levels
0 = Emergency
1= Alert
2 = Critical
3 = Error
4 = Warning
5 = Notice
6 = Information
7 = Debug

Node->Host

Data Indication
Msg Type = 0x8002

<status: uint8_t>

<Profile ID: uintl6_t>

<cluster ID: uintl6_t>

<source endpoint: uint8_t>

<destination endpoint: uint8_t>

<source address mode: uint8_t>
<source address: uint16_t or uint64_t>
<destination address mode: uint8_t>
<destination address: uint16_t or uint64_t>
<payload size : uint8_t>

<payload : data each element is uint8_t>

Node->Host

Node Cluster List —
Sent by gateway node
after reset

Msg Type = 0x8003

<source endpoint: uint8_t t>
<profile ID: uintl6_t>
<cluster list: data each entry is uintl6_t>

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

31

Zigbee 3.0 IoT Control Bridge

Node->Host | Node Cluster Attribute | <source endpoint: uint8_t>
List — Sent by <profile ID: uintl6_t>
Gateway node after <cluster ID: uint16_t>
reset <attribute list: data each entry is uintl6_t>
Msg Type = 0x8004
Node->Host | Node Command ID <source endpoint: uint8_t>
List — sent by <profile ID: uintl6_t>
Gateway node after <cluster ID: uintl6_t>
reset <command ID list:data each entry is uint8_t>
Msg Type = 0x8005
Host->Node | Get Version No payload Status
Msg Type = 0x0010 Version List
Node->Host | Version List <Major version number: uintl6_t>
Msg Type = 0x8010 <Installer version number: uint16_t>
Host->Node | Set Extended PANID <64-bit Extended PAN ID:uint64_t> Status
Msg Type = 0x0020
Host->Node | Set Channel Mask <channel mask:uint32_t> Status
Msg Type = 0x0021
Host->Node | Set Security State & <key type: uint8_t> Status
Key <key: data>
Msg Type = 0x0022
Host->Node | Set Device Type <device type: uint8_t> Status
Msg Type = 0x0023 Device Types:
0 = Coordinator
1 = Router
2 = Legacy Router
Host->Node | Start Network scan No payload Status
Msg Type = Network Joined /
0x0025 Formed
Host->Node | Start Network No payload Status
Message Network Joined /
Type = 0x0024 Formed
Node->Host | Network Joined / <status: uint8_t>
Formed <short address: uintl6_t>
Msg Type = 0x8024 <extended address:uint64_t>
<channel: uint8_t>
Status:
0 = Joined existing network
1 = Formed new network
128 — 244 = Failed (Zigbee event codes)
Host->Node | ZLO/ZLL “Factory No payload Status, followed
New” Reset by chip reset
Msg Type=0x0013 Resets (“Factory New”) the Control Bridge but
persists the frame counters.
Host->Node | “Permit join” status on | No payload Status, followed
the target by “Permit join”
Msg Type = 0x0014 status response
Node->Host | “Permit join” status <Status: bool_t>
response 0 - Off
Msg Type=0x8014 1-0On
Host->Node | Reset No payload Status, followed
Msg Type = 0x0011 by chip reset
Node->Host | Non “Factory new” Status —
Restart
Msg Type=0x8006 0 - STARTUP
2 - NFN_START
6 - RUNNING
The node is provisioned from previous restart.
32 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Node->Host | “Factory New” Status —
Restart
Msg Type=0x8007 0 - STARTUP
2 - NFN_START
6 - RUNNING
The node is not yet provisioned.
Host->Node | Erase Persistent Data | No payload Status
Msg Type = 0x0012
Host->Node | NCI Command Set <NCI Command: uint8_t> Status
Msg Type=0x002D 0x00 — Disabled
0xA0 — Decommission (Factory Reset)
0xAl - Commission
Node->Host | NCI Command Notify | <NCI Command: uint8_t> Status
Msg Type=0x802E 0x00 — Disabled
0xAO0 — Decommission (Factory Reset)
0xA1 — Commission
<Zigbee Device ID: uintl6_t>
<Extended Address: uint64 t>
Host->Node | Bind <target extended address: uint64_t> Status
Msg Type = 0x0030 <target endpoint: uint8_t> Bind response
<cluster ID: uint16_t>
<destination address mode: uint8_t>
<destination address:uint16_t or uint64_t>
<destination endpoint (value ignored for group
address): uint8_t>
Node->Host | Bind response <Sequence number: uint8_t>
Msg Type = 0x8030 <status: uint8_t>
Host->Node | Unbind <target extended address: uint64_t> Status
Msg Type = 0x0031 <target endpoint: uint8_t> Unbind response
<cluster ID: uintl6_t>
<destination address mode: uint8_t>
<destination address: uint16_t or uint64_t>
<destination endpoint(value ignored for group
address): uint8_t>
Node->Host | Unbind response <Sequence number: uint8_t>
Msg Type = 0x8031 <status: uint8_t>
Node->Host | Device Announce < short address: uintl16_t>
Msg Type = 0x004D < |EEE address: uint64_t>
< MAC capability: uint8_t>
MAC capability
Bit O - Alternate PAN Coordinator
Bit 1 - Device Type
Bit 2 - Power source
Bit 3 - Receiver On when Idle
Bit 4,5 - Reserved
Bit 6 - Security capability
Bit 7 - Allocate Address
Host->Node | Network Address <target short address: uintl6_t> Status
request <extended address:uint64_t> Network Address
Msg Type = 0x0040 <request type: uint8_t> response
<start index: uint8_t>
Request Type:
0 = Single Request
1 = Extended Request
Node->Host | Network Address <Sequence number: uin8_t>

response
Msg Type = 0x8040

<status: uint8_t>

<IEEE address: uint64_t>

<short address: uint16_t>

<number of associated devices: uint8_t>
<start index: uint8_t>

<device list — data each entry is uint16_t>

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

33

Zigbee 3.0 IoT Control Bridge

Host->Node | IEEE Address request | <target short address: uint16_t> Status
Msg Type = 0x0041 <short address: uintl6_t> IEEE Address
<request type: uint8_t> response
<start index: uint8_t>
Request Type:

0 = Single

1 = Extended

Node->Host | IEEE Address <Sequence number: uin8_t>

response <status: uint8_t>

Msg Type = 0x8041 <IEEE address: uint64_t>

<short address: uint16_t>

<number of associated devices: uint8_t>
<start index: uint8_t>

<device list — data each entry is uint16_t>

Host->Node | Node Descriptor <target short address: uint16_t> Status
request Node Descriptor
Msg Type = 0x0042 response
Node->Host | Node Descriptor <Sequence number: uint8_t>
response <Status uint8_t>

Msg Type = 0x8042 <network address: uint16_t>
<manufacturer code: uintl6_t>
<max Rx Size: uint1l6_t>
<max Tx Size: uintl6_t>
<server mask: uintl6_t>
<descriptor capability: uint8_t>
<mac flags: uint8_t>

<max buffer size: uint8_t >
<bit fields: uint16_t>

Bitfields:
Logical type (bits 0-2
0 - Coordinator
1 - Router
2 - End Device)
Complex descriptor available (bit 3)
User descriptor available (bit 4)
Reserved (bit 5-7)
APS flags (bit 8-10 — currently 0)
Frequency band(11-15 set to 3 (2.4Ghz))

Server mask bits:
0 - Primary trust center
1 - Back up trust center
2 - Primary binding cache
3 - Backup binding cache
4 - Primary discovery cache
5 - Backup discovery cache
6 - Network manager
7 tol5 - Reserved

MAC capability

Bit O - Alternate PAN Coordinator
Bit 1 - Device Type

Bit 2 - Power source

Bit 3 - Receiver On when Idle

Bit 4-5 - Reserved

Bit 6 - Security capability

Bit 7 - Allocate Address

Descriptor capability:
0 - extended Active endpoint list available
1 - Extended simple descriptor list available
210 7 - Reserved

34 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Host->Node | Simple Descriptor <target short address: uintl6_t> Status
request <endpoint; uint8_t> Simple Descriptor
Msg Type = 0x0043 response
Node->Host | Simple Descriptor <Sequence number: uint8_t>
response <status: uint8_t>
Msg Type= 0x8043 <nwkAddress: uintl6_t>
<length: uint8_t>
<endpoint; uint8_t>
<profile: uint16_t>
<device id: uint16_t>
<bit fields: uint8_t >
<InClusterCount: uint8_t >
<In cluster list: data each entry is uintl6_t>
<OutClusterCount: uint8_t>
<Out cluster list: data each entry is uintl6_t>
Bit fields:
Device version: 4 bits (bits 0-4)
Reserved: 4 bits (bits4-7)
Host->Node | Power Descriptor <target short address: uint16_t> Status
request Power Descriptor
Msg Type = 0x0044 response
Node->Host | Power Descriptor <Sequence number: uin8_t>
response <status : uint8_t>
Msg Type= 0x8044 <bit field : uint16_t>
Bit fields
0 to 3: current power mode
4 to 7: available power source
8 to 11: current power source
12 to15: current power source level
Host->Node | Active Endpoint <target short address: uint1l6_t> Status
request Active Endpoint
Msg Type = 0x0045 response
Node->Host | Active Endpoint <Sequence number: uint8_t>
response <status: uint8_t>
Msg Type = 0x8045 <Address: uint16_t>
<endpoint count: uint8_t>
<active endpoint list: each data element of the
type uint8_t >
Host->Node | Match Descriptor <target short address: uint16_t> Status
request <profile id: uint16_t> Match Descriptor
Msg Type = 0x0046 <number of input clusters: uint8_t> response
<input cluster list:data: each entry is uint16_t >
<number of output clusters: uint8_t>
<output cluster list:data: each entry is uintl6_t>
Node->Host | Match Descriptor <Sequence number: uint8_t>
response <status: uint8_t>
Msg Type = 0x8046 <network address: uint16_t>
<length of list: uint8_t>
<match list: data each entry is uint8_t>
Host->Node | Remove Device <target short address: uint64_t> Status
Msg Type = 0x0026 <extended address: uint64_t> Leave indication
Host->Node | User Descriptor Set < target short address: uintl6_t> Status
Msg Type = 0x002B < Address of interest: uintl6_t> User descriptor
< string length: uint8_t> notify response
<data: uint8_t stream >
Host->Node | User Descritpor < target short address: uint16_t> Status
Request < Address of interest: uintl6_t> User Descriptor
Msg Type = 0x002C response

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

35

Zigbee 3.0 IoT Control Bridge

Node->Host | User Descriptor <Sequence number: uin8_t>
Response <status: uint8_t>
Msg Type = 0x802C <network address of interest: uintl6_6>
<length: uint8_t>
<data: uint8_t stream>
Node->Host | User Descriptor Notify | <Sequence number: uin8_t>
Msg Type = 0x802B <status: uint8_t>
<Network address of interest: uintl6_t>
Host->Node | Complex Descriptor < target short address: uintl6_t> Status
request < Address of interest: uintl6_t> Complex
Msg Type = 0x0034 Descriptor
Response
Node->Host | Complex Descriptor <Sequence number: uin8_t>
response <status: uint8_t>
<Network address of interest: uintl6_t>
<Length: uint8_t>
<xml tag: uint8_t>
<field count: uint8_t>
<field values: uint8_t stream>
Host->Node | Management Leave <target short address: uint16_t> Status
request <extended address: uint64_t> Management
Msg Type = 0x0047 <Rejoin: uint8_t> Leave response
<Remove Children: uint8_t> Leave indication
Rejoin,
0 = Do not rejoin
1 = Rejoin
Remove Children
0 = Leave, removing children
1 = Leave, do not remove children
Node->Host | Management Leave <Sequence number: uin8_t>
response <status: uint8_t>
Msg Type = 0x8047
Node->Host | Leave indication <extended address: uint64_t>
Msg Type = 0x8048 <rejoin status: uint8_t>
Host->Node | Permit Joining request | <target short address: uint16_t> Status
Msg Type = 0x0049 <interval: uint8_t>
<TCsignificance: uint8_t>
Target address: May be address of gateway node
or broadcast (0Oxfffc)
Interval:
0 = Disable Joining
1 - 254 = Time in seconds to allow joins
255 = Allow all joins
TCsignificance:
0 = No change in authentication
1 = Authentication policy as spec
Host->Node | Management Network | <target short address: uint16_t> Status
Update request <channel mask: uint32_t> Management
Msg Type = 0x004A <scan duration: uint8_t> Network Update
<scan count: uint8_t> response
<network update ID: uint8_t>
<network manager short address: uintl6_t>
Channel Mask:
Mask of channels to scan
Scan Duration:
0 — OxFF Multiple of superframe duration.
Scan count:
Scan repeats 0—-5
Network Update ID:
0 — OXFF Transaction ID for scan
36 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Node->Host | Management Network | <Sequence number: uint8_t>
Update response <status: uint8_t>
Msg Type = Ox804A <total transmission: uint16_t>
<transmission failures: uint16_t>
<scanned channels: uint32_t >
<scanned channel list count: uint8_t>
<channel list: list each element is uint8_t>
Host->Node | System Server <target short address: uint16_t> Status
Discovery request <Server mask: uint16_t> System Server
Msg Type = 0x004B Bitmask according to spec. Discovery
response
Node->Host | System Server <Sequence number: uint8_t>
Discovery response <status: uint8_t>
Msg Type = 0x804B <Server mask: uint16_t>
Bitmask according to spec.
Host->Node | Management LQI <Target Address : uint16_t> Status
request <Start Index : uint8_t> Management LQI
Msg Type = Ox004E response

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

37

B.1.2. Entire Profile

Zigbee 3.0 IoT Control Bridge

Message
Direction

Message
Description

Message Format

Expected
Response

Node->Host

Management LQI
response
Msg Type=0x804E

<Sequence number: uint8_t>

<status: uint8_t>

<Neighbour Table Entries : uint8_t>
<Neighbour Table List Count : uint8_t>
<Start Index : uint8_t>

<List of Entries elements described below :>
Note: If Neighbour Table list count is 0, there are
no elements in the list.

NWK Address : uintl6_t

Extended PAN ID : uint64_t

IEEE Address : uint64_t

Depth : uint_t

Link Quality : uint8_t

Bit map of attributes Described below: uint8_t

bit 0-1 Device Type
(0-Coordinator 1-Router 2-End Device)

bit 2-3 Permit Join status
(1- On 0-Off)

bit 4-5 Relationship
(O-Parent 1-Child 2-Sibling)

bit 6-7 Rx On When ldle status
(1-On 0-Off)

Host->Node

Read Attribute request
Msg Type = 0x0100

<address mode: uint8_t>

<target short address: uint1l6_t>

<source endpoint: uint8_t>

<destination endpoint: uint8_t>

<Cluster id: uint16_t>

<direction: uint8_t>

<manufacturer specific: uint8_t>
<manufacturer id: uintl6_t>

<number of attributes: uint8_t>
<attributes list: data list of uintl6_t each>

Direction:
0 - from server to client
1 - from client to server
Manufacturer specific :
0-No
1-VYes

Status
Read Attribute
response

Host->Node

Write Attribute request
Msg Type = 0x0110

<address mode: uint8_t>

<target short address: uintl6_t>

<source endpoint: uint8_t>

<destination endpoint: uint8_t>

<Cluster id: uintl6_t>

<direction: uint8_t>

<manufacturer specific: uint8_t>
<manufacturer id: uintl6_t>

<number of attributes: uint8_t>
<attributes list: data list of uint16_t each>

Direction:
0 - from server to client
1 - from client to server

Data Indication
Msg Type =
0x8002

38

© NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Manufacturer specific :
1-Yes
0 - No

Host->Node

Attribute Discovery
request
Msg Type = 0x0140

<address mode: uint8_t>

<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<Cluster id: uint16_t>

<Attribute id : uintl6_t>

<direction: uint8_t>

<manufacturer specific: uint8_t>
<manufacturer id: uintl6_t>

<Max number of identifiers: uint8_t>

Direction:
0 - from server to client
1 - from client to server
Manufacturer specific :
1-Yes
0-No

Status
Attribute
Discovery
response

Node->Host

Attribute Discovery
response
Msg Type = 0x8140

<complete: uint8_t>
<attribute type: uint8_t>
<attribute id: uintl6_t>

Complete:
0 — more attributes to follow
1 — this was the last attribute

Host->Node

Enable Permissions
Controlled Joins
Msg Type = 0x0027

<Enable/Disable : uint8_t>
1 - Enable
2 — Disable

Status

Host->Node

Authenticate Device
Msg Type = 0x0028

<IEEE address ; uint64_t>
<Key : 16 elements byte each>

Status
Authenticate
response

Node->Host

Authenticate response
Msg Type = 0x8028

<IEEE address of the Gateway: uint64_t>
<Encrypted Key : uint8_t 16 elements>

<MIC : uint8 4 elements>

<IEEE address of the initiating node : uint64_t>
<Active Key Sequence number : uint8_t>
<Channel : uint8_t>

<Short PAN Id : uintl6_t>

<Extended PAN ID : uint64_t>

Host->Node

Configure Reporting
request
Msg Type = 0x0120

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<Cluster id: uintl6_t>
<direction: uint8_t>
<manufacturer specific: uint8_t>
<manufacturer id: uintl6_t>
<number of attributes: uint8_t>
<attributes list: data list of uintl6_t each>
Attribute direction : uint8_t
Attribute type : uint8_t

Attribute id : uint16_t

Min interval : uintl6_t

Max interval : uint1l6_t

Timeout : uint1l6_t

Change : uint8_t

Status

Configure
Reporting
response

Node->Host

Configure Reporting
response
Msg Type = 0x8120

<Sequence number: uint8_t>
<Src address : uintl6_t>
<Endpoint: uint8_t>

<Cluster id: uint16_t>
<Status: uint8_t>

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

39

Zigbee 3.0 IoT Control Bridge

Node->Host | Read individual <Sequence number: uint8_t>
Attribute Response <Src address : uintl6_t>
Msg Type = 0x8100 <Endpoint: uint8_t>
<Cluster id: uint16_t>
<Attribute Enum: uint16_t>
<Attribute status: uint8_t>
<Attribute data type: uint8_t>
<Size Of the attributes in bytes: uint16_t>
<Data byte list : stream of uint8_t>
Node->Host | Write Attribute <Sequence number: uint8_t>
Response <Src address : uintl6_t>
Msg Type = 0x8110 <Endpoint; uint8_t>
<Cluster id: uint16_t>
<Attribute Enum; uintl6_t>
<Attribute status: uint8_t>
<Attribute data type: uint8_t>
<Size Of the attributes in bytes: uint16_t>
<Data byte list : stream of uint8_t>
Node->Host | Report Individual <Sequence number: uint8_t>
Attribute response <Src address : uint16_t>
Msg Type = 0x8102 <Endpoint: uint8_t>
<Cluster id: uint16_t>
<Attribute Enum: uint16_t>
<Attribute status: uint8_t>
<Attribute data type: uint8_t>
<Size Of the attributes in bytes: uint16_t>
<Data byte list : stream of uint8_t>
Node->Host | Default response <Sequence number: uint8_t>
Msg Type = 0x8101 <endpoint: uint8_t>
<Cluster id: uint16_t>
<Command Id: uint8_t>
<Status code: uint8 t>
Host->Node | Out of Band <Address of interest : uint64_t> Status
Commissioning Data <Key : 16 elements byte each> Out of Band
Request Commissioning
Msg Type = 0x0029 Data Response
Node->Host | Out of Band <Device Extended Address: uint64_t>
Commissioning Data <Key : 16 elements byte each>
Response <MIC : uint32_t>

Msg Type = 0x8029

<Host Extended Address : uint64_t>
<Active Key Sequence Number : uint8_t>
<Channel : uint8_t>

<PAN ID : uintl6_t>

<Extended PAN ID : uint64_t>

<Short Address : uintl6_t>

<Device ID : uintl6_t>

<Status: uint8_t>

Install Code Data <Address of interest : uint64_t> Status
Request <Key : 16 elements byte each> Install Code Data
Msg Type = 0x002F Response
Instal Code Data <Status: uint8_t>
Response <Device Extended Address: uint64_t>
Msg Type = 0x802F <Link Key Sequence Number : uint8_t>
B.1.3. Group Cluster Commands
Message Message Message Format Expected
Direction Description Response
40 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Host->Node | Add Group <address mode: uint8_t> Status
Msg Type = 0x0060 <target short address: uintl6_t> Add Group
Command ID = 0x00 <source endpoint: uint8_t> response
<destination endpoint: uint8_t>
<group address: uintl6_t>
Node->Host | Add Group response <Sequence number: uint8_t> Status
Msg Type = 0x8060 <endpoint; uint8_t>
Command ID = 0x00 <Cluster id: uint16_t>
<status: uint8_t>
<Group id: uint16_t>
Host->Node | View Group <address mode: uint8_t> Status
Msg Type = 0x0061 <target short address: uint16_t> View Group
Command ID = 0x01 <source endpoint: uint8_t> response
<destination endpoint: uint8_t>
<group address: uint16_t >
Node->Host | View Group response | <Sequence number: uint8_t>
Message Type = <endpoint: uint8_t>
0x8061 <Cluster id: uint16_t>
Command ID = 0x01 <status: uint8_t>
<Group id :uint16_t>
Host->Node | Get Group <address mode: uint8_t> Status
Membership <target short address: uint16_t> Get Group
Msg Type = 0x0062 <source endpoint: uint8_t> Membership
Command ID = 0x02 <destination endpoint: uint8_t> response
<group count: uint8_t>
<group list:data>
Node->Host | Get Group <Sequence number: uint8_t>
Membership response | <endpoint: uint8_t>
Msg Type = 0x8062 <Cluster id: uint16_t>
Command ID = 0x02 <capacity: uint8_t>
<Group count: uint8_t>
<List of Group id: list each data item uint16_t>
Host->Node | Remove Group <address mode: uint8_t> Status
Msg Type = 0x0063 <target short address: uint16_t> Remove Group
Command ID = 0x03 <source endpoint: uint8_t> response
<destination endpoint: uint8_t>
<group address: uint16_t >
Node->Host | Remove Group <Sequence number: uin8_t> Status
response <endpoint: uint8_t>
Msg Type = 0x8063 <Cluster id: uint16_t>
Command ID = 0x03 <status: uint8_t>
<Group id: uint16_t>
Host->Node | Remove All Groups <address mode: uint8_t> Status
Msg Type = 0x0064 <target short address: uintl6_t>
Command ID = 0x04 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
Host->Node | Add Group if identify <address mode: uint8_t> Status
Msg Type = 0x0065 <target short address: uint16_t>
Command ID = 0x05 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group address: uint16_t >
B.1.4. Identify Cluster Commands
Message Message Message Format Expected
Direction Description Response
Host->Node | Identify Send <address mode: uint8_t> Status

Msg Type = 0x0070

<target short address: uintl6_t>
<source endpoint: uint8_t>

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

41

Zigbee 3.0 IoT Control Bridge

<destination endpoint: uint8_t>
<time: uint1l6_t>
Time: Seconds

Host->Node | Identify Query <address mode: uint8_t> Status
Msg Type = 0x0071 <target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
B.1.5. Level Cluster Commands
Message Message Message Format Expected
Direction Description Response
Host->Node | Move to Level <address mode: uint8_t> Status
Msg Type = 0x0080 <target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<onoff: uint8_t>
<mode: uint8_t>
<rate: uint8_t>
Host->Node | Move to level <address mode: uint8_t> Status
with/without on/off <target short address: uint16_t>
Msg Type = 0x0081 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
<onoff : uint8_t>
<Level: uint8_t >
<Transition Time: uintl6_t>
Host->Node | Move Step <address mode: uint8_t> Status
Msg Type = 0x0082 <target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<onoff: uint8_t>
<step mode: uint8_t >
<step size: uint8_t>
<Transition Time: uintl6_t>
Host->Node | Move Stop Move <address mode: uint8_t> Status
Msg Type = 0x0083 <target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
Host->Node | Move Stop with On <address mode: uint8_t> Status
Off <target short address: uintl6_t>
Msg Type = 0x0084 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
B.1.6. On/Off Cluster Commands
Message Message Message Format Expected
Direction Description Response
Host->Node | On/ Off with effects <address mode: uint8_t> Status
Send <target short address: uintl6_t>
Msg Type = 0x0094 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
<effect ID: uint8_t>
<effect gradient: uint8_t>
Host->Node | On/Off with no effects | <address mode: uint8_t> Status
Msg Type = 0x0092 <target short address: uint16_t>
<source endpoint: uint8_t>
42 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

<destination endpoint: uint8_t>
<command ID: uint8_t>
Command Id

0 - Off

1-0On

2 - Toggle

Host->Node | On/ Off Timed Send
Msg Type = 0x0093

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<onoff: uint8_t>
<on time: uintl6_t>
<off time: uint16_t>
On / Off:

0 = Off

1=0n
Time: Seconds

Status

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

43

Zigbee 3.0 IoT Control Bridge

B.1.7. Scenes Cluster Commands

Message
Direction

Message
Description

Message Format

Expected
Response

Host->Node

View Scene
Msg Type = 0xO0A0

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uintl6_t>

<scene ID: uint8_t>

Status
View Scene
response

Node->Host

View Scene response

Msg Type = 0x80A0

<sequence number: uint8_t>

<endpoint : uint8_t>

<cluster id: uintl6_t>

<status: uint8_t>

<group ID: uint16_t>

<scene ID: uint8_t>

<transition time: uint16_t>

<scene name length: uint8_t>

<scene name max length: uint8_t>

<scene name data: data each element is uint8_t>
<extensions length: uintl6_t>

<extensions max length: uintl6_t>

<extensions data: data each element is uint8_t>

Host->Node

Add Scene
Msg Type = Ox00A1

<address mode: uint8_t>

<target short address: uintl6_t>

<source endpoint: uint8_t>

<destination endpoint: uint8_t>

<group ID: uint16_t>

<scene ID: uint8_t>

<transition time: uint16_t>

<scene name length: uint8_t>

<scene name max length: uint8_t>

<scene name data: data each element is uint8_t>

Status
Add Scene
response

Node->Host

Add Scene response
Msg Type = 0x80A1

<sequence number: uint8_t>
<endpoint : uint8_t>
<cluster id: uintl6_t>
<status: uint8_t>

<group ID: uint16_t>

<scene ID: uint8_t>

Host->Node

Remove Scene
Msg Type = 0x00A2

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

<scene ID: uint8 t>

Status
Remove Scene
response

Node->Host

Remove Scene
response
Msg Type = 0x80A2

<sequence number: uint8_t>
<endpoint : uint8_t>
<cluster id: uintl6_t>
<status: uint8_t>

<group ID: uint16_t>
<scene ID: uint8_t>

Host->Node

Remove all scenes
Msg Type = 0x00A3

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

Status
Data indication

Node->Host

Remove All Scene
response
Msg Type = 0x80A3

<sequence number: uint8_t>
<endpoint : uint8_t>
<cluster id: uintl6_t>
<status: uint8_t>

<group ID: uint16_t>

44

© NXP Semiconductors 2021

JIN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Host->Node

Store Scene
Msg Type = 0x00A4

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

<scene ID: uint8_t>

Status
Data indication

Node->Host

Store Scene response
Msg Type = 0x80A4

<sequence number: uint8_t>
<endpoint : uint8_t>
<cluster id: uintl6_t>
<status: uint8_t>

<group ID: uint16_t>

<scene ID: uint8_t>

Host->Node

Recall Scene
Msg Type = Ox00A5

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

<scene ID: uint8_t>

Status
Data indication

Host->Node

Scene Membership
request
Msg Type = Ox00A6

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

Status
Data indication

Node->Host

Scene Membership
response
Msg Type = Ox80A6

<sequence number: uint8_t>
<endpoint : uint8_t>

<cluster id: uintl6_t>

<status: uint8_t>

<capacity: uint8_t>

<group ID: uint16_t>

<scene count: uint8_t>

<scene list: data each element uint8_t>

Status
Data indication

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

45

B.1.8. Colour Cluster Commands

Zigbee 3.0 IoT Control Bridge

Message
Direction

Message
Description

Message Format

Expected
Response

Host->Node

Move to Hue
Msg Type = 0x00BO

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<hue: uint8_t>

<direction: uint8_t>

<transition time: uint1l6_t>

Status
Data indication

Host->Node

Move Hue
Msg Type = 0x00B1

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<rate: uint8_t>

Status
Data indication

Host->Node

Step Hue
Msg Type = 0x00B2

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<step size: uint8_t>

<transition time: uint8_t>

Status
Data indication

Host->Node

Move to saturation
Msg Type = 0x00B3

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<saturation: uint8_t>

<transition time: uint16_t>

Status
Data indication

Host->Node

Move saturation
Msg Type = 0x00B4

<address mode: uint8_t>
<target short address: uint1l6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<rate: uint8_t>

Status
Data indication

Host->Node

Step saturation
Msg Type = 0x00B5

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<step size: uint8_t>

<transition time: uint8_t>

Status
Data indication

Host->Node

Move to hue and
saturation
Msg Type = 0x00B6

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<hue: uint8_t>

<saturation: uint8_t>
<transition time: uint16_ t>

Status
Data indication

Host->Node

Move to colour
Msg Type = 0x00B7

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<colour X: uintl6_t>

<colour Y: uintl6_t>

<transition time: uint16_t >

Status
Data indication

46

© NXP Semiconductors 2021

JIN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Host->Node

Move Colour
Msg Type = 0x00B8

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<colour X: int16_t>

<colour Y: intl6_t>

Status
Data indication

Host->Node

Step Colour
Msg Type = 0x00B9

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<step X: intl6_t>

<step Y:intl6_t>

<transition time: uintl6_t >

Status
Data indication

B.2. ZLO/ZLL-specific Commands

B.2.1. Touchlink Commands

Message Message Message Format Expected
Direction Description Response
Host->Node | Initiate Touchlink No Payload Status
Msg Type = 0x00DO
Host->Node | Touch link factory No Payload Status
reset target
Msg Type= 0x00D2
Node->Host | Touchlink Status <status: uint8_t>
Msg Type = 0x00D1 <joined node short address: uintl6_t>
Status
0 = Success
1 = Failure
B.2.2. Identify Cluster Commands
Message Message Message Format Expected
Direction Description Response
Host->Node | Identify Trigger Effect | <address mode: uint8_t> Status

Msg Type = 0xO0EO

<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<effect ID: uint8_t>

<effect gradient: uint8_t >

Data indication

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

a7

B.2.3. On/Off Cluster Commands

Zigbee 3.0 IoT Control Bridge

Message Message Message Format Expected
Direction Description Response
Host->Node | On/ Off with Effects <address mode: uint8_t> Status
Msg Type = 0x0092 <target short address: uint16_t> Data indication
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<effect ID: uint8_t>
<effect gradient: uint8_t>
Host->Node | On/ Off Timed <address mode: uint8_t> Status

Msg Type = 0x0093

<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<onoff; uint8_t>

<on time: uint8_t>

<off time: uint8_t>

Data indication

B.2.4. Scenes Cluster Commands

Message
Direction

Message
Description

Message Format

Expected
Response

Host->Node

Add Enhanced Scene
Msg Type = OXO0A7

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

<scene ID: uint8_t>

<transition time: uint16_t>
<scene name: string>

<length: uint16_t>

<max length: uint16_t>

<data: data>

Status
Data indication

Host->Node

View Enhanced Host-
>Node Scene
Msg Type = 0xO0A8

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<group ID: uint16_t>

<scene ID: uint8_t>

Status
Data indication

Host->Node

Copy Scene
Msg Type = 0xO0A9

<address mode: uint8_t>
<target short address: uint1l6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<from group ID: uint16_t>
<from scene ID: uint8_t>

<to group ID: uint16_t>

<to scene ID: uint8 t>

Status
Data indication

48

© NXP Semiconductors 2021

JIN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

B.2.5. Colour Cluster Commands

Message Message Message Format Expected
Direction Description Response
Host->Node | Enhanced Move to <address mode: uint8_t> Status

Hue
Msg Type = 0xO0BA

<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<direction: uint8_t>

<Enhanced Hue: uint16_t>
<transition time: uint16_t>

Data indication

Host->Node Enhanced Move Hue
Msg Type = 0x00BB

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<rate: uint8_t>

Status
Data indication

Host->Node | Enhanced Step Hue
Msg Type = 0x00BC

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<step size: uint8_t>

<transition time: uint8_t>

Status
Data indication

Host->Node Enhanced Move to
hue and saturation
Msg Type = 0x00BD

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<enhanced hue: uint32_t>
<saturation: uint32_t>
<transition time: uint8_t>

Status
Data indication

Host->Node | Colour Loop Set
Msg Type = 0xO0BE

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<update flags: uint8_t>

<action: uint8_t>

<direction: uint8_t>

<time: uint8_t>

<start hue: uint32_t>

Status
Data indication

Host->Node | Stop Move Step
Msg Type = 0xO0BF

<address mode: uint8_t>
<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>

Status
Data indication

Host->Node Move to colour
temperature
Msg Type = 0x00CO

<address mode: uint8_t>
<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<colour temperature: uintl6_t>
<transition time: uint16_t>

Status
Data indication

Host->Node Move colour
temperature
Msg Type = 0x00C1

<address mode: uint8_t>

<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<rate: uintl6_t>

<minimum temperature: uintl6_t>
<maximum temperature: uintl6_t>
<options mask: uint8_t>

<options override: uint8_t>

Status
Data indication

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

49

Zigbee 3.0 IoT Control Bridge

Host->Node

Step colour
temperature
Msg Type = 0x00C2

<address mode: uint8_t>

<target short address: uintl6_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<mode: uint8_t>

<step size: uintl6_t>

<transition time: uint16_t>
<minimum temperature: uintl6_t>
<maximum temperature: uint16_t>

Status
Data indication

B.3. ZHA-specific Commands

B.3.1. Door Lock Cluster Commands

Message Message Message Format Expected
Direction Description Response
Host->Node | Lock / Unlock Door <address mode: uint8_t> Status

Msg Type = OxO0FO

<target short address: uint16_t>
<source endpoint: uint8_t>
<destination endpoint: uint8_t>
<lock/unlock: uint8_t>

0 = Lock

1 = Unlock

Data indication

B.3.2 IAS Cluster Commands

Message Message Message Format Expected
Direction Description Response
Host->Node | IAS Zone enroll <address mode: uint8_t> Status
response <target short address: uint16_t>
Msg Type = 0x0400 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
<Enroll response code: uint8_t>
<Zoneid : uint8_t>
Node->Host | Zone status change <sequence number: uint8_t>
notification <endpoint : uint8_t>
Msg Type = 0x8401 <cluster id: uintl6_t>
<src address mode: uint8_t>
<src address: uint64 t or uintl6_t based on
address mode>
<zone status: uint16_t>
<extended status: uint8_t>
<zone id : uint8_t>
<delay: data each element uint16_t>
50 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

B.4. Exporting Persistent Data to Host

The Zigbee Control Bridge node by default uses the internal EEPROM to hold persisted data.

This is about 4Kbytes on a JN5169 device and can restrict network size. To overcome this it
is possible to export the data persistence to the host device. This requires a binary with this
feature turned “ON”.

The host needs to provide message handshaking sequence to achieve this. How the host

actually stores the persisted data is beyond the scope of the document.

Message Message Message Format Expected
Direction Description Response
Node->Host | Host Persistent Data Host persistent
manager available Node enquires about the availability of the Host Data manager
Request PDM. available
Msg Type = 0x0300 response
Host->Node | Host persistent Data The Host must send this as the first message to
manager available allow the Node to continue operation.
response
Msg Type = 0x8300
Node->Host | Load Record Request | <Record Id : uint16_t> Load Record
Msg Type = 0x0201 response
Host->Node | Load Record <status: uint8_t> Status
response <Record Id: uint16_t>
Msg Type = 0x8201 <total size: uint32_t>
<total number of blocks: uint32_t>
<current block: uint32_t>
<block size: uint32_t>
<data: variable list each item is uint8_t>
status:
0- no record found
1- Record recovered
Node->Host | Save Record request | <Record Id: uint16_t> Save Record
Msg Type = 0x0200 <total size: uint32_t> response
<total number of blocks: uint32_t>
<current block: uint32_t>
<block size: uint32_t>
<data: variable list, each item is uint8_t>
Host->Node | Save Record <Record Id: uint16_t>
response <total size: uint32_t>
Msg Type = 0x8200 <total number of blocks: uint32_t>
<current block: uint32_t>
<block size: uint32_t>
Node->Host | Delete all records
Msg Type = 0x0202

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

51

B.5. Extended Utilities

Zigbee 3.0 IoT Control Bridge

The Zigbee Control Bridge also has some extra commands that are sent or received which

provide extra debug or features.

Message Message Message Format Expected
Direction Description Response
Host->Node | Raw APS Data <address mode: uint8_t> Status
Request <target short address: uint16_t>
Msg Type = 0x0530 <source endpoint: uint8_t>
<destination endpoint: uint8_t>
<profile ID: uint16_t>
<cluster ID: uint16_t>
<security mode: uint8_t>
<radius: uint8_t>
<data length: uint8_t>
<data: auint8_t>
Node->Host | Router Discovery <status: uint8_t>
Confirm <nwk status: uint8_t>
Msg Type = 0x8701
Node->Host | APS Data Confirm <status: uint8_t>
Fall <src endpoint: uint8_t>
Msg Type = 0x8702 <dst endpoint: uint8_t>
<dst address mode: uint8_t>
<destination address: uint64_t>
<seq number: uint8_t>
52 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

Appendix C: Use Case Sequences

C.1. Gateway Start-up

The following sequence of messages is exchanged at start-up. In the tables below, the Node

refers to the Control Bridge.

Direction Message
Host->Node Erase Persistent Data (Optional)
Node->Host Status (If Erase command issued)
Host->Node Reset

Node->Host Status

Node->Host Node Cluster List (multiple)
Node->Host Node Attribute List (multiple)
Node->Host Node Command ID List (multiple)
Host->Node Get Version

Node->Host Status

Node->Host Version List

Host->Node Set Extended PANID
Node->Host Status

Host->Node Set Channel Mask

Node->Host Status

Host->Node Set Security State & Key
Node->Host Status

Host->Node Set Device Type

Node->Host Status

Host->Node Start Network

Node->Host Status

Node->Host Network Formed / Joined

C.2. Touchlink Initiated by Another Control Node

Direction Message
Host->Node Erase Persistent Data (Optional)
Node->Host Status (If Erase command issued)
Host->Node Reset

Node->Host Status

Node->Host Node Cluster List (multiple)
Node->Host Node Attribute List (multiple)
Node->Host Node Command ID List (multiple)
Host->Node Get Version

Node->Host Status

Node->Host Version List

Host->Node Set Extended PANID
Node->Host Status

Host->Node Set Channel Mask

Node->Host Status

Host->Node Set Security State & Key
Node->Host Status

Host->Node Set Device Type

Node->Host Status

Host->Node Start scan

Node->Host Status

Node->Host Network Joined/Failed
Node->Host Touchlink status

Node->Host Network formed

JIN-AN-1247 (v2004) 20-Mar-2021

© NXP Semiconductors 2021

53

Zigbee 3.0 IoT Control Bridge

C.3. Network Formation and Join Under Control of Host

Direction Message
Host->Node Erase Persistent Data (Optional)
Node->Host Status (If Erase command issued)
Host->Node Reset

Node->Host Status

Node->Host Node Cluster List (multiple)
Node->Host Node Attribute List (multiple)
Node->Host Node Command ID List (multiple)
Host->Node Get Version

Node->Host Status

Node->Host Version List

Host->Node Set Extended PANID
Node->Host Status

Host->Node Set Channel Mask

Node->Host Status

Host->Node Set Security State & Key
Node->Host Status

Host->Node Set Device Type

Node->Host Status

Host->Node Start scan

Node->Host Status

Node->Host Network Joined/Failed
Host->Node Start form

Node->Host Network formed

C.4. Touchlink Initiated by Host

Direction Message

Host->Node Erase Persistent Data (Optional)

Node->Host Status (If Erase command issued)

Host->Node Reset

Node->Host Status

Node->Host Node Cluster List (multiple)

Node->Host Node Attribute List (multiple)

Node->Host Node Command ID List (multiple)

Host->Node Get Version

Node->Host Status

Node->Host Version List

Host->Node Set Extended PANID

Node->Host Status

Host->Node Set Channel Mask (Set Primary channels
11,15,20,25)

Node->Host Status

Host->Node Set Security State & Key

Node->Host Status

Host->Node Set Device Type

Node->Host Status

Host->Node Start scan

Node->Host Status

Node->Host Network Joined/Failed

Host->Node Initiate Touchlink

Node->Host Touchlink status

Node->Host Network formed

54 © NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

C.5. Warm Restart

Direction Message

Node->Host Warm restart status

C.6. Join Notification - Device Joining Network Formed by Gateway

Direction Message
Node->Host New device joined indication
Host->Node Match descriptor request
Node->Host Status

Node->Host Match descriptor response
Host->Node Add Group

Node->Host Status

Host->Node Identify

Node->Host Status

Node->Host Identify response

C.7. Gateway Joins Existing Network

Direction Message
Host->Node Match descriptor request (Broadcast)
Node->Host Status

Node->Host Match descriptor response
Host->Node Add Group

Node->Host Status

Host->Node Identify

Node->Host Status

Node->Host Identify response

C.8. Binding Control

No sequence required — issue Bind and Unbind commands and get status back

C.9. Identification
No sequence required — commands and get status back.
For all profiles:
o |dentify Send (0x0070)
o |dentify Query (0x0071)
For ZLO/ZLL devices:

o Identify Trigger Effect (OXOOEO)

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

C.10. Scene Management

No sequence required — issue commands and get status back.

For all profiles:

View Scene (0xO00AQ)

Add Scene (0x00A1)

Remove Scene (0x00A2)

Remove all scenes (0x00A3)

Store Scene (0x00A4)

Recall Scene (0x00A5)

Scene membership request (0xO0AG)

For ZLO/ZLL devices:

Add Enhanced Scene (0x00A7),
View Enhanced Scene (0x00A8)
Copy Scene (0x00A9)

C.11. Group Management

No sequence required — issue commands and get status back.

Add Group (0x0060)

View Group (0x0061)

Get Group Membership (0x0062)
Remove Group (0x0063)
Remove All Groups (0x0064)
Add Group if identify (0x0065)

C.12. On/Off Control

56

Zigbee 3.0 IoT Control Bridge

Direction Message
Host->Node On / Off Send (0x0090)
Node->Host Status
Node->Host On/Off Indication

Or
Direction Message
Host->Node On / Off Timed Send (0x0091)
Node->Host Status
Node->Host On/Off Indication

© NXP Semiconductors 2021

JIN-AN-1247 (v2004) 20-Mar-2021

Zigbee 3.0 IoT Control Bridge

C.13. Level Control

No sequence required — issue commands and get status back.

Move to Level (0x0080)

Move to level with/without On/Off (0x0081)
Move Step (0x0082)

Move Stop Move (0x0083)

Move Stop with On/Off (0x0084)

C.14. Colour Control

For all profiles:

Move to Hue (0x00BO)

Move Hue (0x00B1)

Step Hue (0x00B2)

Move to saturation (0x00B3)

Move saturation (Ox00B4)

Step saturation (0x00B5)

Move to hue and saturation (0x00B6)
Move to colour(0x00B7)

Move Colour (0x00B8)

Step Colour (0x00B9)

For ZLO/ZLL devices:

Enhanced Move to Hue (0xO0BA)

Enhanced Move Hue (0x00BB)

Enhanced Step Hue (0x00BC)

Enhanced Move to hue and saturation (Ox00BD)
Colour Loop Set (OxO0BE)

Stop Move Step (Ox00BF)

Move to colour temperature (0x00CO0)

Move colour temperature (0x00C1)

Step colour temperature (0x00C2)

JN-AN-1247 (v2004) 20-Mar-2021 © NXP Semiconductors 2021

57

Zigbee 3.0 IoT Control Bridge

Important Notice

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

58

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D
are trademarks of NXP B.V.

All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision,
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US
and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 20-Mar-2021
Document identifier: JN-AN-1247

© NXP Semiconductors 2021 JN-AN-1247 (v2004) 20-Mar-2021

	1 Application Note Overview
	2 Capabilities
	3 What is Provided
	4 Development Environment
	4.1 Software
	4.1.1 Compilation for Specific Chips/SDKs

	4.2 Hardware

	5 Running the Demonstration
	5.1 Programming the DK006 Device
	5.2 Running the ZGWUI
	5.2.1 Connecting to the Control Bridge
	5.2.2 Configuring and Starting a Network
	5.2.3 Setting up the Nodes
	5.2.3.1 Programming the Zigbee Device Binaries

	5.2.4 Joining Nodes to the Network
	5.2.4.1 Classic Join
	5.2.4.2 Install Codes Join
	5.2.4.3 NFC Join

	5.2.5 Controlling Devices
	5.2.5.1 On/Off Cluster
	5.2.5.2 Level Control Cluster

	5.2.6 Managing Groups
	5.2.6.1 Add Group
	5.2.6.2 View Group
	5.2.6.3 Get Group Membership
	5.2.6.4 Remove Group
	5.2.6.5 Remove All Groups
	5.2.6.6 Add Group If Identifying

	5.2.7 Managing Scenes
	5.2.7.1 Add Scene
	5.2.7.2 Store Scene
	5.2.7.3 Recall Scene
	5.2.7.4 View Scene
	5.2.7.5 Get Scene Membership
	5.2.7.6 Remove All Scenes
	5.2.7.7 Remove Scene

	5.2.8 Running Over-The-Air (OTA) Upgrade
	5.2.8.1 Loading the Upgrade Binary
	5.2.8.2 Image Notify
	5.2.8.3 Device Updating

	6 ZGWUI Source
	7 Related Documents
	Appendix A: Serial Protocol
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.
	A.

	Appendix B: Serial Command Set
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.
	B.

	B.3.2 IAS Cluster Commands
	B.
	B.

	Appendix C: Use Case Sequences
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.
	C.

